基于Prophet等时间序列模型的耐碳青霉烯类鲍曼不动杆菌检出预测及评价

Prediction and evaluation of carbapenem-resistant Acinetobacter baumannii detection based on Prophet and other time series models

  • 摘要: 目的 探讨不同时间序列模型在耐碳青霉烯鲍曼不动杆菌(CRAB)检出预测的应用。方法 以2021年1月-2024年9月汕头大学医学院第二附属医院CRAB的检出率数据,建立Prophet模型、SARIMA模型和Holt-Winters模型,使用2024年10月-2025年3月的数据进行验证,评价模型的预测效果。结果 2021-2024年CRAB检出率整体呈上升趋势(WTBXχWTBZ2=4.883,P=0.027);每年3~4月为检出高峰,具有周期性和季节性;三种模型均能较好的拟合CRAB检出率趋势,Prophet模型在相同置信度下的置信区间更小,SARIMA模型的预测效果评价参数表现最佳:均方根误差(RMSE)=13.029,平均绝对百分比误差(MAPE)=20.162,平均绝对误差(MAE)=8.932。结论 三种模型对CRAB检出趋势均有较好的预测能力,可用于CRAB检出预警和动态分析,为及时制定和采取防控干预措施提供理论依据。

     

    Abstract: OBJECTIVE To explore the application of different time series models in predicting the detection of carbapenem-resistant Acinetobacter baumannii (CRAB). METHODS Based on the detection rate data of CRAB from the Second Affiliated Hospital of Shantou University Medical College from Jan. 2021 to Sept. 2024, Prophet, SARIMA and Holt-Winters models were established. The data from Oct. 2024 to Mar. 2025 were used for validation to evaluate the prediction effect of the models. RESULTS From 2021 to 2024, the overall detection rate of CRAB showed an upward trend (χ2=4.883, P=0.027). The peak detection period occurred annually from Mar. to Apr., exhibiting periodicity and seasonality. All three models effectively fitted the trend of CRAB detection rates. The Prophet model had a narrower confidence interval at the same confidence level, while the SARIMA model demonstrated the best performance in prediction effect evaluation parameters: root mean square error (RMSE)=13.029, mean absolute percentage error (MAPE)=20.162 and mean absolute error (MAE)=8.932. CONCLUSION All three models exhibit good prediction capabilities for CRAB detection trends and can be utilized for early warning and dynamic analysis of CRAB detection, providing a theoretical basis for the timely formulation and implementation of prevention and control interventions.

     

/

返回文章
返回