三叉神经微血管减压术后手术部位感染风险Nomogram预测模型构建与验证

Construction and validation of nomogram prediction model for surgical site infection risk after microvascular decompression for trigeminal neuralgia

  • 摘要: 目的 探讨三叉神经微血管减压术(MVD)患者发生手术部位感染(SSI)影响因素,构建Nomogram预测模型并验证。方法 分析2022年1月-2024年12月在济宁市第一人民医院神经外科接受MVD治疗的462例三叉神经痛患者的临床资料,按照7∶3随机分为训练集(n=323)和验证集(n=139)。多因素logistic回归分析筛选独立危险因素,构建Nomogram预测模型并进行验证。结果 三叉神经微血管减压术术后SSI发生率为12.12%(56/462)。logistic回归分析MVD术后发生SSI的影响因素为:低蛋白血症(OR=3.316)、手术时间(OR=1.016)、住院时间(OR=1.233)、乳突气房开放(OR=2.580)、术前0.5~1h预防性使用抗菌药物(OR=0.232)。构建的Nomogram预测模型训练集与验证集的Hosmer-Lemeshow(H-L)检验值分别为(P=0.651)和(P=0.974),显示模型拟合度较好。模型的受试者工作特征(ROC)曲线下的面积(AUC)训练集为0.917(95%CI:0.879~0.955),验证集为0.954(95%CI:0.913~0.995),说明两个模型有较好区分度。校准曲线显示两组模型一致性较好,临床决策曲线(DCA)显示两组模型的临床应用价值较高。结论 基于Nomogram构建的三叉神经微血管减压术后SSI风险预测模型具有较好的预测效能和较高的临床实用价值,有助于早期识别高风险患者并针对性干预。

     

    Abstract: OBJECTIVE To explore the influencing factors of surgical site infection (SSI) in patients undergoing microvascular decompression (MVD) for trigeminal neuralgia, and to construct and validate a nomogram prediction model. METHODS Clinical data of 462 patients with trigeminal neuralgia, who underwent MVD in the Department of Neurosurgery at Jining No. 1 People's Hospital from Jan. 2022 to Dec. 2024, were analyzed. The patients were randomly divided into a training set (n=323) and a validation set (n=139) at a ratio of 7∶3. Multivariate logistic regression analysis was used to screen independent risk factors, and a nomogram prediction model was constructed and validated. RESULTS The incidence of SSI after MVD for trigeminal neuralgia was 12.12% (56/462). Logistic regression analysis identified the following influencing factors for SSI after MVD: hypoalbuminemia (OR=3.316), operation time (OR=1.016), hospital stay (OR=1.233) mastoid air cell opening (OR=2.580) and prophylactic use of antibacterial agents 0.5-1h before surgery (OR=0.232). The Hosmer-Lemeshow (H-L) test values for the constructed nomogram prediction model in the training and validation sets were P=0.651 and P=0.974, respectively, indicating good model fit. The area under the receiver operating characteristic (ROC) curve (AUC) was 0.917 (95%CI: 0.879-0.955) for the training set and 0.954 (95%CI: 0.913-0.995) for the validation set, demonstrating good discriminative ability. Calibration curves showed good consistency in both models, and decision curve analysis (DCA) indicated high clinical utility value of the two models. CONCLUSION The nomogram-based risk prediction model for SSI after MVD for trigeminal neuralgia exhibits strong predictive performance and high clinical utility value, aiding in early identification of high-risk patients and targeted interventions.

     

/

返回文章
返回